Теплоемкость кирпича: от чего зависит, показатели

Физические величины имеют высокую значимость при выборе материала для строительства здания. Рассмотрим основные показатели, используемые в строительстве, например, чтобы разобраться, что такое удельная теплоемкость кирпича, необходимо выяснить, что представляет собой данная физическая величина.

Теплоемкость кирпича: от чего зависит, показатели

Кирпич

Итак:

  • Теплоемкость. По сути, удельная теплоёмкость определяется количеством тепла, требуемого для нагрева одного килограмма вещества на один градус Цельсия (на один Кельвин).
  • Теплопроводность.Не менее важным физическим показателем кирпичного сооружения является способность передачи тепла при разных температурах снаружи и внутри здания, называемая коэффициентом теплопроводности. Этот параметр выражает, какое количество тепла, теряется за 1 метр толщины стены при различии температуры на 1 градус между наружной и внутренней областью.
  • Теплопередача. Коэффициент теплопередачи кирпичной стены будет во многом зависеть от того, какой вид материала для кирпичной кладки вы выберете. Чтобы определить данный коэффициент для многослойной стены, требуется знать этот параметр для каждого слоя в отдельности. Затем складываются все величины, так как суммарный коэффициент термосопротивления является суммой сопротивлений всех слоев, входящих в стену.

Теплоемкость кирпича: от чего зависит, показатели

Коэффициент теплопроводности кирпича и пеноблока

Обратите внимание! Полнотелые кирпичи обладают довольно высоким коэффициентом теплопроводности и поэтому гораздо более экономично применение пустотелого вида. Это происходит из-за того, что воздух в пустотах обладает более низкой теплопроводностью, а значит, стены сооружения будут значительно тоньше.

  • Сопротивление теплопередаче. Сопротивление теплопередаче кирпичной стены определяется как отношение разности температур на краях строительной конструкции к количеству тепла проходящего через него. Данный параметр используется для отражения свойств материалов и выражается отношением плотности материала к его теплопроводности.
  • Теплотехническая однородность. Коэффициент теплотехнической однородности кирпичной стены это параметр равный обратному отношению потока тепла через стену к количеству тепла, проходящего через условное ограждающее сооружение равное по площади стене.

Теплоемкость кирпича: от чего зависит, показатели

Таблица сравнения теплопроводности древесины и кирпича

Обратите внимание! Инструкция о том, как рассчитать данный параметр, довольно сложна, поэтому этим лучше заниматься компаниям, имеющим опыт и соответствующие приборы для определения тех или иных показателей.

По сути, коэффициент теплотехнической однородности для кирпичной кладки выражает, сколько и какую интенсивность имеют «мостики холода» в данной ограждающей конструкции. В большинстве случаев данная величина колеблется в пределах 0,6-0,99, причём за единицу берется полностью однородная стена, не имеющая теплопроводных изъянов.

Теплоемкость кирпича: от чего зависит, показатели

Сравнительная характеристика основных строительных материалов по базовым показателям

Содержание

  • Виды кирпича
    • СИЛИКАТНЫЙ
    • КЕРАМИЧЕСКИЙ
    • ТЕПЛАЯ КЕРАМИКА
  • РЕЗЮМЕ

Виды кирпича

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

СИЛИКАТНЫЙ

Теплоемкость кирпича: от чего зависит, показатели

Силикатный кирпич

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м оС). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.

Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

КЕРАМИЧЕСКИЙ

Теплоемкость кирпича: от чего зависит, показатели

Керамический кирпич

Второе место по популярности строительных кирпичей обоснованно отдано керамическим. Для их производства различные смеси глин подвергают обжигу.

Данный вид делится на два типа:

  1. Строительный,
  2. Облицовочный.

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

  • Полнотелый – 0,6 Вт/м* оС;
  • Пустотелый кирпич — 0,5 Вт/м* оС;
  • Щелевой – 0,38 Вт/м* оС.

Средняя теплоемкость кирпича составляет около 0,92 кДж.

ТЕПЛАЯ КЕРАМИКА

Теплоемкость кирпича: от чего зависит, показатели

Теплая керамика

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* оС.

Теплоемкость кирпича: от чего зависит, показатели

Свойства теплой керамики

Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

РЕЗЮМЕ

Надеемся, наша статья поможет вам разобраться в большом количестве физических параметров кирпича и выбрать для себя наиболее подходящий вариант по всем показателям! А видео в этой статье предоставит дополнительную информацию по этой теме, смотрите.

Источник: https://stroy-bloks.ru/udelnaya-teploemkost-proizvodimogo-kirpicha/

Теплоемкость материалов — таблица

В строительстве очень важной характеристикой является теплоемкость строительных материалов.

От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания.

Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды.

Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.

Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.

Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.

Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.

м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг. Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С.

Для выбранных условий рассчитываем теплоемкость выбранных материалов:

  1.  Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2.  Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3.  Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Читайте также:  Как поднимать кирпич на высоту: способы, рекомендации

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Теплоемкость кирпича: от чего зависит, показатели

Источник: http://stroydetali.com/teploemkost-materialov-tablica_/

Кирпич теплоемкость – СНиП 23-02 Расчетные теплотехнические показатели кирпичных кладок из сплошного кирпича. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость

Подбирая подходящий материал для проведения того или иного вида строительных работ, особое внимание следует обращать на его технические характеристики. Это касается и удельной теплоемкости кирпича, от которой во многом зависит потребность дома в последующей термоизоляции и дополнительной отделке стен.

Характеристики кирпича, которые влияют на его применение:

  • Удельная теплоемкость. Величина, определяющая количество тепловой энергии, необходимой для нагревания 1 кг на 1 градус.
  • Теплопроводность. Очень важная характеристика для кирпичных изделий, позволяющая определить количество передаваемого тепла со стороны комнаты на улицу.
  • На уровень теплопередачи кирпичной стены прямым образом влияют характеристики использованного для ее возведения материала. В тех случаях, когда речь идет о многослойной кладке, потребуется учитывать коэффициент теплопроводности каждого слоя в отдельности.

Керамический

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки.2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции.3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок.

4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Силикатный

Что касается силикатного кирпича, то он бывает полнотелым, пустотелым и поризованным. Исходя из размеров, различают одинарные, полуторные и двойные кирпичи. В среднем силикатный кирпич обладает плотностью 1600 кг/м3. Особенно ценятся шумопоглощающие характеристики силикатной кладки: даже если речь идет о стене небольшой толщины, уровень ее звукоизоляции будет на порядок выше, чем в случае применения других типов кладочного материала.

Облицовочный

Отдельно стоит сказать об облицовочном кирпиче, который с одинаковым успехом противостоит и воде, и повышению температуры. Показатель удельной теплоемкости этого материала находится на уровне 0,88 кДж/(кг·K), при плотности до 2700 кг/м3. В продаже облицовочные кирпичи представлены в большом многообразии оттенков. Они подходят как для облицовки, так и для укладки.

Огнеупорный

Представлен динасовыми, карборундовыми, магнезитовыми и шамотными кирпичами. Масса одного кирпича довольно большая, по причине значительной плотности (2700 кг/м3). Самый низкий показатель теплоемкости при нагревании у карборундового кирпича 0,779 кДж/(кг·K) для температуры +1000 градусов. Скорость нагревания печи, уложенной из этого кирпича, значительно превышает нагрев шамотной кладки, однако охлаждение наступает быстрее.

Из огнеупорного кирпича обустраиваются печи, предусматривающие нагревание до +1500 градусов. На удельную теплоемкость данного материала большое влияние оказывает температура нагрева. К примеру, тот же шамотный кирпич при +100 градусах обладает теплоемкостью 0,83 кДж/(кг·K). Однако, если его нагреть до +1500 градусов, это спровоцирует рост теплоемкости до 1,25 кДж/(кг·K).

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

  • Трепельный. При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
  • Силикатный. Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
  • Саманный. При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
  • Красный. Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).
  • Желтый. Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
  • Строительный. При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
  • Облицовочный. Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).
  • Динасовый. Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).
  • Карборундовый. По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).
  • Магнезитовый. Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).
  • Хромитовый. Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).
  • Шамотный. Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).
  • Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

Источник: https://tsm-co.ru/raznoe/kirpich-teploemkost-snip-23-02-raschetnye-teplotexnicheskie-pokazateli-kirpichnyx-kladok-iz-sploshnogo-kirpicha-teploemkost-teploprovodnost-i-teplousvoenie-v-zavisimosti-ot-plotnosti-i-vla.html

Плотность и удельная теплоемкость кирпича

Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться.

Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу. Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м3.

 Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м3.

Чем выше пористость, тем меньше плотность кирпича.

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м3.

Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне.

Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича

Вид кирпича
Температура, °С
Плотность, кг/м3
Теплоемкость, Дж/(кг·град)
Трепельный -20…20 700…1300 712
Силикатный -20…20 1000…2200 754…837
Саманный -20…20  — 753
Красный 0…100 1600…2070 840…879
Желтый -20…20 1817 728
Строительный 20 800…1500 800
Облицовочный 20 1800 880
Динасовый 100 1500…1900 842
Динасовый 1000 1500…1900 1100
Динасовый 1500 1500…1900 1243
Карборундовый 20 1000…1300 700
Карборундовый 100 1000…1300 841
Карборундовый 1000 1000…1300 779
Магнезитовый 100 2700 930
Магнезитовый 1000 2700 1160
Магнезитовый 1500 2700 1239
Хромитовый 100 3050 712
Хромитовый 1000 3050 921
Шамотный 100 1850 833
Шамотный 1000 1850 1084
Шамотный 1500 1850 1251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град).

Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м3.

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м3.

Читайте также:  Нормы по укладке кирпича для одного каменщика

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

Источники:

Источник: http://thermalinfo.ru/svojstva-materialov/strojmaterialy/plotnost-i-teploemkost-kirpicha

Теплопроводность и теплоемкость материалов

Теплопроводность – способность материала проводить тепловой поток через свою толщину при наличии разности температур на поверхностях, ограничивающих материал. Показателем теплопроводности является коэффициент теплопроводности λ. Иногда теплопроводность выражают величиной, обратной λ,— термическим сопротивлением (R = 1 / λ).

Коэффициент теплопроводности зависит от природы материала, его строения, пористости и влажности. Материал кристаллического строения обычно более теплопроводен по сравнению с материалом аморфного строения.

Коэффициент теплопроводности слоистых (слоистые пластики) и волокнистых (древесина) материалов существенно зависит от направления теплового потока по отношению к слоям или волокнам.

Так, у древесины вдоль волокон он примерно вдвое больше, чем поперек.

Величина λ тем больше, чем крупнее поры в материалах. Коэффициент снижается с уменьшением средней плотности однородных материалов, причем наименьшую теплопроводность имеют материалы с развитой пористостью и небольшой влажностью.

При увлажнений материала теплопроводность его увеличивается, так как коэффициент теплопроводности воды примерно в 25 раз больше, чем воздуха.

Ниже приводятся коэффициенты теплопроводности различных материалов, Вт / (м · °С); для сравнения даются значения λ воды и воздуха:

  • медь……………………. 403,00
  • сталь……………………. 58,00
  • гранит……………………. 2,92
  • бетон тяжелый…………. 1,28—1,55
  • кирпич глиняный………. 0,70—0,85

туф……………………….. 0,35—0,45

  1. сосна:
  2. вдоль волокон 0,30
  3. поперек волокон    0,17
  4. минеральная вата   0,06—0,09

бетон теплоизоляционный . .0,03—0,08

вода… … 0,599

воздух           0,023

Теплопроводность имеет практическое значение при выборе материалов для наружных стен, перекрытий и покрытий зданий, изоляции теплосетей, холодильников, котлов и т. п.

Теплоемкость

Теплоемкость – свойство материала поглощать тепло при нагревании и отдавать при охлаждении. Отношение теплоемкости к единице количества материала (по массе или объему) называется удельной теплоемкостью, которая численно равна количеству тепла (в Дж), необходимому для нагревания I кг материала на I °С. Удельная теплоемкость, кДж / (кг -°С), приведенных ниже материалов составляет:

Читайте так же:  Размягчение

  • медь 0,38
  • сталь      0,46—0,48
  • алюминиевые сплавы     0,90
  • природные каменные материалы    0,75—0,93
  • бетон тяжелый 0,80—0,92
  • кирпич    0,74

сосна . .        2,51

Теплоемкость учитывают при определении теплоустойчивости наружных ограждений отапливаемых зданий (требуются материалы с наиболее высокой удельной теплоемкостью), при расчете подогрева составляющих бетона и раствора, также мастик для работ в зимнее время и т. п.

Тепловое расширение

Тепловое расширение – свойство материала изменять объем и размеры при нагревании. Количественно характеризуется коэффициентами объемного и линейного расширения.

Коэффициент объемного расширения равен относительному увеличению объема материала, а коэффициент линейного расширения – относительному увеличению его длины при нагревании на 1 °С.

Жесткое соединение нескольких материалов с разными коэффициентами теплового расширения может вызвать в конструктивном элементе значительные по величине напряжения, которые приведут к его короблению и растрескиванию. При большом изменении размеров материала из-за колебаний температуры может произойти его разрушение.

Огнестойкость – способность материала противостоять действию огня и высоких температур во время пожара. По степени огнестойкости все материалы делят на несгораемые, трудносгораемые и сгораемые.

Под действием огня или высокой температуры материалы ведут себя по-разному: несгораемые (природные каменные материалы, бетон, кирпич, сталь и т. п.

) не воспламеняются, не тлеют и не обугливаются; трудносгораемые (фибролит, асфальтовый бетон, древесина, пропитанная огнезащитными составами) с трудом воспламеняются, тлеют или обугливаются в присутствии источника огня; сгораемые (незащищенная древесина, войлок, рубероид, большинство полимерных материалов) воспламеняются и продолжают гореть после удаления источника огня.

Причем из числа несгораемых одни материалы (кирпич глиняный, черепица, большинство бетонов) практически не деформируются и не растрескиваются, другие – значительно деформируются (сталь), а некоторые разрушаются (гранит, мрамор, известняк).

При оценке огнестойкости материалов необходимо также учитывать совместное действие высокой температуры, воды и других жидкостей, используемых при тушении пожара, а также химических веществ и газов, выделяющихся из некоторых материалов (особенно полимерных).

Читайте так же:  Истираемость

Огнеупорность – свойство материала выдерживать, не расплавляясь и не деформируясь, длительное воздействие высоких температур.

По степени огнеупорности материалы подразделяют на огнеупорные, тугоплавкие и легкоплавкие: огнеупорные (например, шамотный кирпич) выдерживают продолжительное воздействие температуры свыше 1580 °C (используют для внутренней облицовки промышленных печей), тугоплавкие (гжельский кирпич) выдерживают температуру 1350—1580 °С, легкоплавкие (кирпич глиняный обыкновенный) противостоят температуре ниже 1350 °С.

Электропроводность – способность материала проводить электрический ток. Она зависит от обратного электропроводности свойства – электрического сопротивления. Очевидно, что чем меньше удельное электрическое сопротивление материала, тем лучше он проводит электрический ток.

В зависимости от этого показателя все материалы подразделяют на проводники, полупроводники и изоляторы. К проводникам относятся серебро, медь и ее сплавы, алюминий, сталь. Хорошими изоляторами являются резина, асбест, фарфор, стекло, пластические массы.

Полупроводники (кремний, мышьяк и др.) занимают промежуточное положение между проводниками и изоляторами; в обычных условиях они слабо проводят электрический ток.

Полупроводники широко применяются в различных отраслях народного хозяйства, в частности для регулирования силы тока и напряжения, преобразования одного вида энергии в другой.

Электропроводность и соответственно электрическое сопротивление материалов учитывают при оценке качества и выборе шнуров, проводов, кабелей, электроустановочных и других изделий.

Цвет материалов – это определенное зрительное ощущение, вызываемое в результате воздействия на глаз потоков электромагнитного излучения в диапазоне видимой части спектра. В общем случае цвет материала связан с его окраской, свойствами поверхности и оптическими свойствами источников света. Цвет играет большую роль при выборе облицовочных и отделочных материалов.

Структура – строение материала, определенное сочетание его составных частей. В структуре материалов различают структуру горной породы, структуру металла и др.

Фактура (от латинского фактура – обработка, строение) – видимое строение поверхности материала. Различают две группы фактур: рельефные (с разной высотой и разнообразным характером рельефа) и гладкие (от зеркально-блестящих до шероховато-ровных).

Читайте так же:  Каменная облицовка уход и реставрация

Цвет, структура и фактура различных материалов более подробно рассмотрены при их характеристике в соответствующих главах книги.

Источник: https://arxipedia.ru/materialy-i-svojstva/teploprovodnost-i-teploemkost-materialov.html

Теплопроводность керамического кирпича: обзор одного из основных свойств материала

Кирпич керамический

Планируя строительство дома, застройщики в первую очередь приступают к выбору оптимального материала, оценивая при этом наиболее приоритетные качества. Одним из таких является способность материала к теплосохранению, обеспечивающее частичную экономию при строительстве и эксплуатации здания.

Что представляют собой изделия из керамики

Для начала вкратце разберемся, что же представляет собой кирпич керамический, и какими свойствами он обладает.

Состав и свойства

Основным компонентом при производстве является мелкозернистая глина. Помимо нее в состав входит песок, вода и добавки, способные повысить исходное качество сырья и готовой продукции.

Например, пластификатор значительно повышает пластичность раствора и препятствует растрескиванию изделий. Соотношение сырья в будущем определяет основной набор свойств изделий, а, точнее, их числовые значения.

Ориентировочные пропорции сырья керамического кирпича

Рассмотрим усредненные показатели при помощи таблицы.

Таблица 1. Характеристики керамического кирпича:

Марка морозостойкости

Морозостойкость – одно из достоинств изделий. Она может достигать 250-300 циклов. Стоит показатель в зависимости от плотности, прочности. Чем они выше, тем большее количество циклов замораживания и оттаивания сможет выдержать изделие.

Теплопроводность

Коэффициент теплопроводности керамического кирпича нельзя назвать его самой сильной стороной. Он – повышен. А с чем это связано, мы рассмотрим чуть ниже.

Плотность и прочность

Марки прочности – М50-М250, 300. Плотность может достигать 2100 кг/м3. Согласитесь, это – завидные показатели для многих материалов.

Усадка

Кирпич усадке подвержен. Точное значение назвать сложно, во многом это зависит от вида изделия. Например, клинкерный кирпич почти не поддается усадке, она составляет не более 3-5%.

Гигроскопичность

Водопоглощение свойственно керамике, значение – около 8-10%. Но, опять же, многое зависит от типа кирпича, его плотности и технологии изготовления.

Экологичность

Об экологичности судить достаточно сложно. Ведь она зависит от месторождения основного сырья. Хотя все производители в один голос заявляют, что изделия абсолютно безопасны и, по сути, так это и должно быть.

Читайте также:  Как выложить декоративные кирпичи: способы, подготовка

Огнестойкость

Не горит. Может противостоять высокой температуре на протяжении длительного периода времени.

Классификация изделий и их основные различия

Существует большое количество различных видов керамического кирпича. Они отличаются между собой назначением, структурой, размером и другими показателями. Рассмотрим подробнее.

По назначению, изделия могут быть:

  • Рядовыми. Их применяют при кладке стен и перегородок. Последующая отделка, как правило, требуется. Материал отличается повышенной плотностью и, как следствие коэффициентом теплопроводности.

Рядовое изделие, фото

  • Лицевыми. Служат они для облицовки строений, возведения заборов и многое другое. К таким изделиям предъявляются повышенные требования в отношении внешнего вида. Сколы и иные дефекты не допустимы.

Лицевое изделие

Структура кирпича определяет существование следующих видов:

  • Пустотелые изделия. Они – более легковесные и менее плотные, серьезной нагрузке подвергаться не могут.

Пустотелый кирпич

  • Полнотелые же — наоборот: прочные и тяжелые, а теплопроводность керамического кирпича полнотелого сравнительно завышена.

На основе размеров изделий также сформирована классификация:

  • Кирпич с маркировкой 1НФ называется одинарный. Он имеет габариты равные 250*120*65 мм.

Размеры и вес одинарного кирпича

  • Маркировка 1,4 НФ указывает на то, что перед вами – полуторный, или утолщенный кирпич. Его высота несколько больше и составляет 88 мм.

Утолщенный кирпич

  • Двойные изделия имеют маркировку 2,1 НФ, высота их – 138 мм.

Кирпич двойной

  • Особенным размером обладают евро-изделия. Они отличаются не только толщиной, но и высотой, которые составляют 85 и 65 мм соответственно.

Евро изделия

Как уже говорилось выше, керамический кирпич может иметь различную марку по прочности и, в зависимости от нее, определяется область применения изделий при строительстве. Марки могут быть следующими: М50, 75, 100, 125, 150, 175, 200, 250.

  • М50 – наименее прочны. Применяются обычно при строительстве, например, столбов для ограждений, заборов.
  • М 75 и М100 могут использоваться при возведении стен почти любых, помимо несущих.
  • А вот М 125 вполне может быть применена при строительстве несущей конструкции.

Более высокие марки изделий используют при возведении цоколя и иных конструкций, на которые будет оказываться существенная нагрузка.

Значение теплопроводности и ее зависимость от иных характеристик и факторов, понятие теплой керамики

Как становится очевидным, теплоемкость керамического кирпича стоит в прямой зависимости от плотности и прочности изделий. Чем они выше, тем способность к теплосохранению ниже.

  • Например, теплопроводность керамического полнотелого кирпича плотностью 1800 кг/м3 составляет около 0,85 Вт*мС, а вот пустотелое изделие с показателем средней плотности в 1400 кг/м3 может похвастать более низким значением, равным около 0,55 Вт*мС.
  • Поризованные изделия обладают самым низким из всех перечисленных коэффициентом, он может составлять около 0,25.
  • Самой низкой способностью к сохранению тепла обладает клинкерный кирпич. Это опять же связано в его крайне высокой плотностью, которая достигает 2100 кг/м3.
  • Рассмотрим при помощи таблицы соотношения плотности и теплопроводности различных видов кирпича.
  • Таблица 2.  Кирпич керамический: теплопроводность различных видов изделий:
  • Вид изделияПлотность, кг/м3Коэффициент теплопроводности в сухом виде, Вт*мС.

Рядовой керамический кирпич полнотелый

1600-19000,5-0,7

Клинкерный кирпич

21000,8-0,9

Кирпич теплая керамика

1150-14000,22-0,35

Печной кирпич керамический

1600-19000,5-0,7

Обратите внимание! На данный момент крайне популярным стало строительство кирпичных домов «теплая керамика».

Изделия, используемые для их возведения, отличаются высоким показателем плотности и, при этом, пониженным коэффициентом теплопроводности. Привлекает также застройщиков возможность применять изделия самостоятельно.

Строительство своими руками поможет значительно сэкономив, компенсировав высокую стоимость на материал, так как цена сравнительно немалая.

Видео в этой статье:

Пример расчета оптимальной толщины стены, практические способы повышения способности к теплосохранению

Каким образом можно повысить способность стены к сохранению тепла?

Существует несколько способов:

  • В первую очередь стоит упомянуть о технологии укладки. Соблюдая ее, вы сможете подчеркнуть высокие показатели качеств керамических изделий.
  • Утепление конструкции, разумеется, значительно снизит коэффициент теплопроводности здания. Важно выбрать наиболее оптимальный метод. Например, создание воздушного зазора при этом будет наиболее эффективным.
  • Крайне популярным вариантом является применение керамического кирпича в качестве облицовочного материала, а вот основные стены можно выложить с использованием ячеистого бетона, например. В этом случае, строение будет наиболее теплым.

А как же рассчитать толщину стены, если застройщик все же решил строить здание исключительно из кирпича? Все достаточно просто. Оптимальным вариантом является кладка в полтора или два кирпича – эти виды наиболее распространены.

Толщина стен зависит от региона и климатических условий в первую очередь, поэтому при расчете следует учитывать так называемый коэффициент сопротивления теплоотдаче, который индивидуален для каждого региона. Указан он в СНиП. Среднее значение равно 3,4, поэтому в нашем примере мы и будем его использовать.

Предположим, что кирпич мы применяем рядовой керамический полнотелый, с плотностью в 1600 кг/м3 и теплопроводностью равной 0,5 Вт*мС.

0,5*3,4=1,7. Значение получается крайне большим. Однако, при расчете необходимо учитывать теплопроводность утеплителей и вычитать ее. Чем интенсивнее будет утепление, тем меньшей будет рекомендуемая толщина стены.

В заключение

Коэффициент теплопроводности керамического кирпича, как мы выяснили, зависит от вида изделий и их плотности. И чем последняя выше, тем способностью к теплосохранению ниже.

Однако, несмотря на мало конкурентный показатель, существуют методы повышения данной способности, которые помогут застройщику построить теплый дом.

Читать далее…

Источник: https://zen.yandex.ru/media/id/5a62024379885e3316994254/5a6ebeb779885e3794f4d174

Теплоаккумулирующая способность материалов

Способность материала удерживать тепло оценивается его удельной теплоемкостью, т.е. количеством тепла (в кДж), необходимым для повышения температуры одного килограмма материала на один градус. Например, вода имеет удельную теплоемкость, равную 4,19 кДж/(кг*K). Это значит, например, что для повышения температуры 1 кг воды на 1°K требуется 4,19  кДж.

Таблица 1. Сравнение некоторых теплоаккумулирующих материалов

Ма­те­ри­ал
Плот­ность, кг/м3
Теп­ло­ем­кость, кДж/(кг*K)
Ко­эф­фи­ци­ент те­пло­про­вод­нос­ти, Вт/(м*K)
Мас­са ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, кг
От­но­си­тель­ная мас­са ТАМ по от­но­ше­нию к мас­се во­ды, кг/кг
Объем ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, м3
От­но­си­тель­ный объем ТАМ по от­но­ше­нию к объему во­ды, м3/м3
Гранит, галька 1600 0,84 0,45 59500 5 49,6* 4,2
Вода 1000 4,2 0,6 11900 1 11,9 1
Глауберова соль (декагидрат сульфата натрия)* 14600т1300ж 1,92т3,26ж 1,85т1,714ж 3300 0,28 2,26 0,19
Парафин* 786т 2,89т 0,498т 3750 0,32 4,77 0,4

Для водонагревательных установок и жидкостных систем отопления лучше всего в качестве теплоаккумулирующего материала применять воду, а для воздушных гелиосистем — гальку, гравий и т.п.

Следует иметь в виду, что галечный теплоаккумулятор при одинаковой энергоемкости по сравнению с водяным теплоаккумулятором имеет в 3 раза больший объем и занимает в 1,6 раза большую площадь.

Например, водяной теплоаккумулятор диаметром 1,5 м и высотой 1,4 м имеет объем 4,3 м3, в то время как галечный теплоаккумулятор в форме куба со стороной 2,4 м имеет объем 13,8 м3.

Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода теплоаккумулирующего материала. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккумулирования соответствует теплоте сгорания, кВт*ч/кг:

  • нефть — 11,3;
  • уголь (условное топливо) — 8,1;
  • водород — 33,6;
  • древесина — 4,2.

При термохимическом аккумулировании теплоты в цеолите (процессы адсорбции — десорбции) может аккумулироваться 286 Вт*ч/кг теплоты при разности температур 55°C.

Плотность аккумулирования теплоты в твердых материалах (скальная порода, галька, гранит, бетон, кирпич) при разности температур 60°C составляет 14…17 Вт*ч/кг, а в воде — 70 Вт*ч/кг.

При фазовых переходах вещества (плавление — затвердевание) плотность аккумулирования значительно выше, Вт*ч/кг:

  • лед (таяние) — 93;
  • парафин — 47;
  • гидраты солей неорганических кислот — 40…130.
Таблица 2. Сравнение удельной теплоемкости и плотности различных материалов на основе равных объемов

Материал
Удельная теплоемкость, кДж/(кг*K)
Плотность, кг/м3
Теплоемкость, кДж/(м3*K)
Вода 4,19 1000 4187
Металлоконструкции 0,46 7833 3437
Бетон 1,13 2242 2375
Кирпич 0,84 2242 1750
Магнетит, железная руда 0,68 5125 3312
Базальт, каменная порода 0,82 2880 2250
Мрамор 0,86 2880 2375

К сожалению, лучший из приведенных в таблице 2 строительных материалов — бетон, удельная теплоемкость которого составляет 1,1 кДж/(кг*K), удерживает лишь ¼ того количества тепла, которое хранит вода того же веса. Однако плотность бетона (кг/м3) значительно превышает плотность воды.

Во втором столбце таблицы 2 приведены плотности этих материалов. Умножив удельную теплоемкость на плотность материала, получим теплоемкость на кубический метр. Эти величины приведены в третьем столбце таблицы 2.

Следует отметить, что вода, несмотря на то, что обладает наименьшей плотностью из всех приведенных материалов, имеет теплоемкость на 1 м3 выше (2328,8 кДж/м3), чем остальные материалы таблицы, в силу ее значительно большей удельной теплоемкости.

Низкая удельная теплоемкость бетона в значительной степени компенсируется его большой массой, благодаря которой он удерживает значительное количество тепла (1415,9 кДж/м3).

Источник: http://www.mensh.ru/articles/teploakkumuliruyushchaya-sposobnost-materialov

Ссылка на основную публикацию
Adblock
detector